一、背景介绍
CDP系统中目前存在大量由用户ID集合组成的标签和群体,截止当前已有几千+标签,群体2W+。大量的标签都是亿级别数据量以上,例如性别、职业、学历等均,甚至有群体中的ID数量达到了数十亿+。并且随着用户ID池的不断增加,标签和群体本身包含的ID数量也随之增加,如何存储如此多的数据,标签与群体之间的组合计算,是我们面临的挑战。二、问题描述
如此大量的用户ID集合,虽然标签和群体的ID集合本质类似,但是都需要存储亿级别的ID数据,这就对存储结构提出较高的要求。这里拿群体举例,如果某群体包含1000W个用户ID,通过文本文件存储,大概需要150M,40亿的群体就达到了惊人的150*40*10=60000M,大约60G,而我们的群体数量已经达到了几W+,再加上标签数据,所需要的存储空间将不可接受。并且,数据的存储只是其中一个方面,后续针对标签和群体的组合计算,创建出更细粒度的ID包也是一个挑战。三、解决方案
面对以上问题,CDP采用了Bitmap的思路来解决,不但解决了存储空间问题,而且Bitmap本身的交并差运算,能够很好的支持用户对不同标签和群体的组合计算,详细方案如下。1)Bitmap简介
它的基本思想是用bit位来唯一标记某个数值,这样可以用它来记录一个数值没有重复的数据元组。并且每一条数据只使用一个bit来标识,能够大大的节省存储空间。Java中如果用byte类型来存储,不考虑其他开销,需要4个字节的空间,一个字节8位,也就是4*8=32bit。倘若使用更大的数据类型,存储空间也会相应增大,如使用Integer(4字节),则需要4*4*8=128bit。而如果采用bitmap的思想,只需要构建一个8bit空间,也就是一个字节的空间来存储,如下图。
通过上文的例子,可以看到,使用Bitmap思想来存储,实际上每一个数据是一个bit,而且不能重复,这一点用户ID是符合的,没有重复的用户ID。由于bitmap里只能存0或者1来标识当前位是否有值,而用户ID确是一个字符串,这就需要将数十亿的用户ID进行唯一性编码,这个编码也就是我们常说的offset偏移量。每一个用户ID对应一个唯一的offset,目前已到数十亿,也就是说当前最大的偏移量是数十亿+,这部分由数据同学帮我们加工一张ID池表,其中包含了ID和offset的对应关系。这样,新注册的id,只要顺序增加offset值即可。下边是一个简单示意图,假设我有8个id,id1~id8,对应的offset编号为1~8。我要建一个只包含双数id的标签或群体,则我只需要将offset为2,4,6,8的位设为1即可。
有了存储的数据结构,还有id池,接下来就是具体实现了。提到Bitmap,首先想到的是Java中的一种实现方案BitSet,不过它存在两个问题。一是我们的id池已经到达几十亿+,已经超出了BitSet所能处理的范围,当前超出了2^32=4294967296。另一个问题是,倘若我建一个包含两个id的群体,第一个offset是1,第二个offset是10000000,这种情况还是要创建一个1000wbit的空间来存储,并且只有两个bit位是1,其他的全为0,这显然造成了很大的空间浪费。下方位BitSet扩容时的代码,由代码中也可以看到,默认扩容2倍,当需要的大小超过2倍时,则按照需要扩容。public void set(int bitIndex) {
if (bitIndex < 0)
throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
int wordIndex = wordIndex(bitIndex);
expandTo(wordIndex);
words[wordIndex] |= (1L << bitIndex);
checkInvariants();
}
private void expandTo(int wordIndex) {
int wordsRequired = wordIndex+1;
if (wordsInUse < wordsRequired) {
ensureCapacity(wordsRequired);
wordsInUse = wordsRequired;
}
}
private void ensureCapacity(int wordsRequired) {
if (words.length < wordsRequired) {
int request = Math.max(2 * words.length, wordsRequired);
words = Arrays.copyOf(words, request);
sizeIsSticky = false;
}
}
当用户圈的群体特别稀疏时,有可能会造成很大的空间浪费,所以,我们需要使用一种能够压缩的高效的位图实现。4)RoaringBitmap压缩
我们最终使用的是RoaringBitmap,一种高效的压缩位图实现,简称RBM。于2016年由S. Chambi、D. Lemire、O. Kaser等人在论文《Better bitmap performance with Roaring bitmaps》 《Consistently faster and smaller compressed bitmaps with Roaring》中提出。以整型int(32位)为例,将数据分成高16位和低16位两部分,低16位不变,作为数据位Container,高16位作为桶的编号Container,可以理解为高位的Container中,存放了很多个低位Container。protected static char highbits(int x) {
return (char) (x >>> 16);
}
protected static char lowbits(int x) {
return (char) x;
}
比如,我要存放65538这个值,则高位为65538>>>16=1(右移16位,相当于除以2的16次方(65536)然后取整数,结果就是1),低位为65538-65536*1=2,即存储在1号桶的2号位置,存储位置如下图:
当然啦,如果你要存储的数据小于65536,那肯定是直接在第0号的桶里面。我们当前使用的RoaringBitmap版本为0.8.13,Container包含了三种实现:ArrayContainer(数组容器),BitmapContainer(位图容器),RunContainer(行程步长容器)不过,上文中提到当前id池已经超过了整型所能标识的最大范围(2^32=4294967296),所以需要一个能够处理64位的实现,我们使用了RoaringBitmap包中支持64位的Roaring64NavigableMap。
它的实现思路和32位的基本一致,分成了高32位和低32位两部分,同样的,高的32位相当于是有32个桶,每个桶中都有2的32次方个位,这样就完成了将海量数据的压缩。
全部评论