SQL语句性能优化

  优化成本:硬件>系统配置>数据库表结构>SQL 及索引。
  优化效果:硬件<系统配置<数据库表结构<SQL 及索引。
对于MySQL层优化我一般遵从五个原则:
  • 1.减少数据访问:合理的字段类型,启用压缩,通过索引访问等减少磁盘 IO。

  • 2.返回更少的数据:只返回需要字段和数据分页处理,减少磁盘IO及网络 IO。

  • 3.减少交互次数:批量 DML 操作,函数存储等减少数据连接次数。

  • 4.减少服务器CPU开销:减少数据库排序以及全表查询,减少 CPU 内存占用。

  • 5.利用更多资源:使用表分区,可以增加并行操作,更大限度利用CPU资源。

总结到 SQL 优化中,就如下三点:
  • 1.最大化利用索引。

  • 2.尽可能避免全表扫描。

  • 3.减少无效数据的查询。

理解 SQL 优化原理 ,首先要搞清楚 SQL 执行顺序。

SELECT 语句,语法顺序如下:

1. SELECT 
2. DISTINCT <select_list>
3. FROM <left_table>
4. <join_type> JOIN <right_table>
5. ON <join_condition>
6. WHERE <where_condition>
7. GROUP BY <group_by_list>
8. HAVING <having_condition>
9. ORDER BY <order_by_condition>
10.LIMIT <limit_number>

SELECT 语句,执行顺序如下:

FROM
<表名> # 选取表,将多个表数据通过笛卡尔积变成一个表。
ON
<筛选条件> # 对笛卡尔积的虚表进行筛选
JOIN <join, left join, right join...> 
<join表> # 指定join,用于添加数据到on之后的虚表中,例如left join会将左表的剩余数据添加到虚表中
WHERE
<where条件> # 对上述虚表进行筛选
GROUP BY
<分组条件> # 分组
<SUM()等聚合函数> # 用于having子句进行判断,在书写上这类聚合函数是写在having判断里面的
HAVING
<分组筛选> # 对分组后的结果进行聚合筛选
SELECT
<返回数据列表> # 返回的单列必须在group by子句中,聚合函数除外
DISTINCT
# 数据除重
ORDER BY
<排序条件> # 排序
LIMIT
<行数限制>

以下 SQL 优化策略适用于数据量较大的场景下,如果数据量较小,没必要以此为准,以免画蛇添足。

避免不走索引的场景

①尽量避免在字段开头模糊查询,会导致数据库引擎放弃索引进行全表扫描
如下:
SELECT * FROM t WHERE username LIKE '%陈%'

优化方式:尽量在字段后面使用模糊查询。
如下:
SELECT * FROM t WHERE username LIKE '陈%'
如果需求是要在前面使用模糊查询:
  • 使用 MySQL 内置函数 INSTR(str,substr)来匹配,作用类似于 Java 中的 indexOf(),查询字符串出现的角标位置。

  • 使用 FullText 全文索引,用 match against 检索。

  • 数据量较大的情况,建议用 ElasticSearch、Solr,亿级数据检索速度秒级。

  • 当表数据量较少(几千条儿那种),别整花里胡哨的,直接用 like '%xx%'。

②尽量避免使用 in 和 not in,会导致引擎走全表扫描
如下:
SELECT * FROM t WHERE id IN (2,3)
优化方式:如果是连续数值,可以用 between 代替。
如下:
SELECT * FROM t WHERE id BETWEEN 2 AND 3
如果是子查询,可以用 exists 代替。
如下:
-- 不走索引
select * from A where A.id in (select id from B);
-- 走索引
select * from A where exists (select * from B where B.id = A.id);
③尽量避免使用 or,会导致数据库引擎放弃索引进行全表扫描
如下:
SELECT * FROM t WHERE id = 1 OR id = 3
优化方式:可以用 union 代替 or。
如下:
SELECT * FROM t WHERE id = 1
   UNION
SELECT * FROM t WHERE id = 3
④尽量避免进行 null 值的判断,会导致数据库引擎放弃索引进行全表扫描
如下:
SELECT * FROM t WHERE score IS NULL
优化方式:可以给字段添加默认值 0,对 0 值进行判断。
如下:
SELECT * FROM t WHERE score = 0
⑤尽量避免在 where 条件中等号的左侧进行表达式、函数操作,会导致数据库引擎放弃索引进行全表扫描
可以将表达式、函数操作移动到等号右侧,如下:
-- 全表扫描
SELECT * FROM T WHERE score/10 = 9
-- 走索引
SELECT * FROM T WHERE score = 10*9
⑥当数据量大时,避免使用 where 1=1 的条件
通常为了方便拼装查询条件,我们会默认使用该条件,数据库引擎会放弃索引进行全表扫描。
如下:
SELECT username, age, sex FROM T WHERE 1=1
优化方式:用代码拼装 SQL 时进行判断,没 where 条件就去掉 where,有 where 条件就加 and。
⑦查询条件不能用 <> 或者 !=
使用索引列作为条件进行查询时,需要避免使用<>或者!=等判断条件。
如确实业务需要,使用到不等于符号,需要在重新评估索引建立,避免在此字段上建立索引,改由查询条件中其他索引字段代替。
⑧where 条件仅包含复合索引非前置列
如下:复合(联合)索引包含 key_part1,key_part2,key_part3 三列,但 SQL 语句没有包含索引前置列"key_part1",按照 MySQL 联合索引的最左匹配原则,不会走联合索引。
select col1 from table where key_part2=1 and key_part3=2
⑨隐式类型转换造成不使用索引
如下 SQL 语句由于索引对列类型为 varchar,但给定的值为数值,涉及隐式类型转换,造成不能正确走索引。
select col1 from table where col_varchar=123
⑩order by 条件要与 where 中条件一致,否则 order by 不会利用索引进行排序
如下:
-- 不走age索引
SELECT * FROM t order by age;

-- 走age索引
SELECT * FROM t where age > 0 order by age;
对于上面的语句,数据库的处理顺序是:
  • 第一步:根据 where 条件和统计信息生成执行计划,得到数据。

  • 第二步:将得到的数据排序。当执行处理数据(order by)时,数据库会先查看第一步的执行计划,看 order by 的字段是否在执行计划中利用了索引。如果是,则可以利用索引顺序而直接取得已经排好序的数据。如果不是,则重新进行排序操作。

  • 第三步:返回排序后的数据。

当 order by 中的字段出现在 where 条件中时,才会利用索引而不再二次排序,更准确的说,order by 中的字段在执行计划中利用了索引时,不用排序操作。
这个结论不仅对 order by 有效,对其他需要排序的操作也有效。比如 group by 、union 、distinct 等。
⑪正确使用 hint 优化语句
MySQL 中可以使用 hint 指定优化器在执行时选择或忽略特定的索引。
一般而言,处于版本变更带来的表结构索引变化,更建议避免使用 hint,而是通过 Analyze table 多收集统计信息。
但在特定场合下,指定 hint 可以排除其他索引干扰而指定更优的执行计划:
  • USE INDEX 在你查询语句中表名的后面,添加 USE INDEX 来提供希望 MySQL 去参考的索引列表,就可以让 MySQL 不再考虑其他可用的索引。

    例子: SELECT col1 FROM table USE INDEX (mod_time, name)...

  • IGNORE INDEX 如果只是单纯的想让 MySQL 忽略一个或者多个索引,可以使用 IGNORE INDEX 作为 Hint。

    例子: SELECT col1 FROM table IGNORE INDEX (priority) ...

  • FORCE INDEX 为强制 MySQL 使用一个特定的索引,可在查询中使用FORCE INDEX 作为 Hint。

    例子: SELECT col1 FROM table FORCE INDEX (mod_time) ...

在查询的时候,数据库系统会自动分析查询语句,并选择一个最合适的索引。但是很多时候,数据库系统的查询优化器并不一定总是能使用最优索引。
如果我们知道如何选择索引,可以使用 FORCE INDEX 强制查询使用指定的索引。
例如:
SELECT * FROM students FORCE INDEX (idx_class_id) WHERE class_id = 1 ORDER BY id DESC;

SELECT 语句其他优化

①避免出现 select *
首先,select * 操作在任何类型数据库中都不是一个好的 SQL 编写习惯。
使用 select * 取出全部列,会让优化器无法完成索引覆盖扫描这类优化,会影响优化器对执行计划的选择,也会增加网络带宽消耗,更会带来额外的 I/O,内存和 CPU 消耗。
建议提出业务实际需要的列数,将指定列名以取代 select *。
②避免出现不确定结果的函数
特定针对主从复制这类业务场景。由于原理上从库复制的是主库执行的语句,使用如 now()、rand()、sysdate()、current_user() 等不确定结果的函数很容易导致主库与从库相应的数据不一致。
另外不确定值的函数,产生的 SQL 语句无法利用 query cache。
③多表关联查询时,小表在前,大表在后
在 MySQL 中,执行 from 后的表关联查询是从左往右执行的(Oracle 相反),第一张表会涉及到全表扫描。
所以将小表放在前面,先扫小表,扫描快效率较高,在扫描后面的大表,或许只扫描大表的前 100 行就符合返回条件并 return 了。
例如:表 1 有 50 条数据,表 2 有 30 亿条数据;如果全表扫描表 2,你品,那就先去吃个饭再说吧是吧。
④使用表的别名
当在 SQL 语句中连接多个表时,请使用表的别名并把别名前缀于每个列名上。这样就可以减少解析的时间并减少哪些友列名歧义引起的语法错误。
⑤用 where 字句替换 HAVING 字句
避免使用 HAVING 字句,因为 HAVING 只会在检索出所有记录之后才对结果集进行过滤,而 where 则是在聚合前刷选记录,如果能通过 where 字句限制记录的数目,那就能减少这方面的开销。
HAVING 中的条件一般用于聚合函数的过滤,除此之外,应该将条件写在 where 字句中。
where 和 having 的区别:where 后面不能使用组函数。
⑥调整 Where 字句中的连接顺序
MySQL 采用从左往右,自上而下的顺序解析 where 子句。根据这个原理,应将过滤数据多的条件往前放,最快速度缩小结果集。

增删改 DML 语句优化

①大批量插入数据
如果同时执行大量的插入,建议使用多个值的 INSERT 语句(方法二)。这比使用分开 INSERT 语句快(方法一),一般情况下批量插入效率有几倍的差别。
方法一:
insert into T values(1,2); 

insert into T values(1,3); 

insert into T values(1,4);
方法二:
Insert into T values(1,2),(1,3),(1,4); 
选择后一种方法的原因有三:
  • 减少 SQL 语句解析的操作,MySQL 没有类似 Oracle 的 share pool,采用方法二,只需要解析一次就能进行数据的插入操作。

  • 在特定场景可以减少对 DB 连接次数。

  • SQL 语句较短,可以减少网络传输的 IO。

②适当使用 commit
适当使用 commit 可以释放事务占用的资源而减少消耗,commit 后能释放的资源如下:
  • 事务占用的 undo 数据块。

  • 事务在 redo log 中记录的数据块。

  • 释放事务施加的,减少锁争用影响性能。特别是在需要使用 delete 删除大量数据的时候,必须分解删除量并定期 commit。

③避免重复查询更新的数据
针对业务中经常出现的更新行同时又希望获得改行信息的需求,MySQL 并不支持 PostgreSQL 那样的 UPDATE RETURNING 语法,在 MySQL 中可以通过变量实现。
例如,更新一行记录的时间戳,同时希望查询当前记录中存放的时间戳是什么?
简单方法实现:
Update t1 set time=now() where col1=1

Select time from t1 where id =1;
使用变量,可以重写为以下方式:
Update t1 set time=now () where col1=1 and @now: = now (); 

Select @now
前后二者都需要两次网络来回,但使用变量避免了再次访问数据表,特别是当 t1 表数据量较大时,后者比前者快很多。
④查询优先还是更新(insert、update、delete)优先
MySQL 还允许改变语句调度的优先级,它可以使来自多个客户端的查询更好地协作,这样单个客户端就不会由于锁定而等待很长时间。改变优先级还可以确保特定类型的查询被处理得更快。
我们首先应该确定应用的类型,判断应用是以查询为主还是以更新为主的,是确保查询效率还是确保更新的效率,决定是查询优先还是更新优先。
下面我们提到的改变调度策略的方法主要是针对只存在表锁的存储引擎,比如  MyISAM 、MEMROY、MERGE,对于 Innodb 存储引擎,语句的执行是由获得行锁的顺序决定的。
MySQL 的默认的调度策略可用总结如下:
  • 写入操作优先于读取操作。

  • 对某张数据表的写入操作某一时刻只能发生一次,写入请求按照它们到达的次序来处理。

  • 对某张数据表的多个读取操作可以同时地进行。

MySQL 提供了几个语句调节符,允许你修改它的调度策略:
  • LOW_PRIORITY 关键字应用于 DELETE、INSERT、LOAD DATA、REPLACE 和 UPDATE。

  • HIGH_PRIORITY 关键字应用于 SELECT 和 INSERT 语句。

  • DELAYED 关键字应用于 INSERT 和 REPLACE 语句。

如果写入操作是一个 LOW_PRIORITY(低优先级)请求,那么系统就不会认为它的优先级高于读取操作。
在这种情况下,如果写入者在等待的时候,第二个读取者到达了,那么就允许第二个读取者插到写入者之前。
只有在没有其它的读取者的时候,才允许写入者开始操作。这种调度修改可能存在 LOW_PRIORITY 写入操作永远被阻塞的情况。
SELECT 查询的 HIGH_PRIORITY(高优先级)关键字也类似。它允许 SELECT 插入正在等待的写入操作之前,即使在正常情况下写入操作的优先级更高。
另外一种影响是,高优先级的 SELECT 在正常的 SELECT 语句之前执行,因为这些语句会被写入操作阻塞。
如果希望所有支持 LOW_PRIORITY 选项的语句都默认地按照低优先级来处理,那么请使用--low-priority-updates 选项来启动服务器。
通过使用 INSERTHIGH_PRIORITY 来把 INSERT 语句提高到正常的写入优先级,可以消除该选项对单个 INSERT 语句的影响。

查询条件优化

①对于复杂的查询,可以使用中间临时表暂存数据
②优化 group by 语句
默认情况下,MySQL 会对 GROUP BY 分组的所有值进行排序,如 “GROUP BY col1,col2,....;” 查询的方法如同在查询中指定 “ORDER BY col1,col2,...;” 。
如果显式包括一个包含相同的列的 ORDER BY 子句,MySQL 可以毫不减速地对它进行优化,尽管仍然进行排序。
因此,如果查询包括 GROUP BY 但你并不想对分组的值进行排序,你可以指定 ORDER BY NULL 禁止排序。
例如:
SELECT col1, col2, COUNT(*) FROM table GROUP BY col1, col2 ORDER BY NULL ;
③优化 join 语句
MySQL 中可以通过子查询来使用 SELECT 语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。

使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的 SQL 操作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,子查询可以被更有效率的连接(JOIN)..替代。
例子:假设要将所有没有订单记录的用户取出来,可以用下面这个查询完成:
SELECT col1 FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )
如果使用连接(JOIN)..来完成这个查询工作,速度将会有所提升。
尤其是当 salesinfo 表中对 CustomerID 建有索引的话,性能将会更好,查询如下:
SELECT col1 FROM customerinfo 
   LEFT JOIN salesinfoON customerinfo.CustomerID=salesinfo.CustomerID 
      WHERE salesinfo.CustomerID IS NULL
连接(JOIN)..之所以更有效率一些,是因为 MySQL 不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。
④优化 union 查询
MySQL 通过创建并填充临时表的方式来执行 union 查询。除非确实要消除重复的行,否则建议使用 union all。
原因在于如果没有 all 这个关键词,MySQL 会给临时表加上 distinct 选项,这会导致对整个临时表的数据做唯一性校验,这样做的消耗相当高。
高效:
SELECT COL1, COL2, COL3 FROM TABLE WHERE COL1 = 10 

UNION ALL 

SELECT COL1, COL2, COL3 FROM TABLE WHERE COL3= 'TEST';
低效:
SELECT COL1, COL2, COL3 FROM TABLE WHERE COL1 = 10 

UNION 

SELECT COL1, COL2, COL3 FROM TABLE WHERE COL3= 'TEST';
⑤拆分复杂 SQL 为多个小 SQL,避免大事务
如下:
  • 1.简单的 SQL 容易使用到 MySQL 的 QUERY CACHE。

  • 2.减少锁表时间特别是使用 MyISAM 存储引擎的表。

  • 3.可以使用多核 CPU。

⑥使用 truncate 代替 delete
当删除全表中记录时,使用 delete 语句的操作会被记录到 undo 块中,删除记录也记录 binlog。
当确认需要删除全表时,会产生很大量的 binlog 并占用大量的 undo 数据块,此时既没有很好的效率也占用了大量的资源。
使用 truncate 替代,不会记录可恢复的信息,数据不能被恢复。也因此使用 truncate 操作有其极少的资源占用与极快的时间。另外,使用 truncate 可以回收表的水位,使自增字段值归零。
⑦使用合理的分页方式以提高分页效率
使用合理的分页方式以提高分页效率 针对展现等分页需求,合适的分页方式能够提高分页的效率。
案例 1:
select * from t where thread_id = 10000 and deleted = 0 
   order by gmt_create asc limit 015;
上述例子通过一次性根据过滤条件取出所有字段进行排序返回。数据访问开销=索引 IO+索引全部记录结果对应的表数据 IO。
因此,该种写法越翻到后面执行效率越差,时间越长,尤其表数据量很大的时候。
适用场景:当中间结果集很小(10000 行以下)或者查询条件复杂(指涉及多个不同查询字段或者多表连接)时适用。
案例 2:
select t.* from (select id from t where thread_id = 10000 and deleted = 0
   order by gmt_create asc limit 015) a, t 
      where a.id = t.id;
上述例子必须满足 t 表主键是 id 列,且有覆盖索引 secondary key:(thread_id, deleted, gmt_create)。
通过先根据过滤条件利用覆盖索引取出主键 id 进行排序,再进行 join 操作取出其他字段。
数据访问开销=索引 IO+索引分页后结果(例子中是 15 行)对应的表数据 IO。因此,该写法每次翻页消耗的资源和时间都基本相同,就像翻第一页一样。
适用场景:当查询和排序字段(即 where 子句和 order by 子句涉及的字段)有对应覆盖索引时,且中间结果集很大的情况时适用。

建表优化

在表中建立索引,优先考虑 where、order by 使用到的字段。
尽量使用数字型字段(如性别,男:1 女:2),若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。
这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
查询数据量大的表 会造成查询缓慢。主要的原因是扫描行数过多。这个时候可以通过程序,分段分页进行查询,循环遍历,将结果合并处理进行展示。
要查询 100000 到 100050 的数据,如下:
SELECT * FROM (SELECT ROW_NUMBER() OVER(ORDER BY ID ASCAS rowid,* 
   FROM infoTab)t WHERE t.rowid > 100000 AND t.rowid <= 100050
用 varchar/nvarchar 代替 char/nchar。
尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
不要以为 NULL 不需要空间,比如:char(100) 型,在字段建立时,空间就固定了, 不管是否插入值(NULL 也包含在内),都是占用 100 个字符的空间的,如果是 varchar 这样的变长字段, null 不占用空间。

其他常用优化方案

1、对查询进行优化,应尽量避免全表扫描,首先应考虑在where及order by涉及的列上建立索引。


2、应尽量避免在where子句中对字段进行null值判断,创建表时NULL是默认值,但大多数时候应该使用NOT NULL,或者使用一个特殊的值,如0,-1作为默认值。


3、应尽量避免在where子句中使用!=或<>操作符,MySQL只有对以下操作符才使用索引:<,<=,=,>,>=,BETWEEN,IN,以及某些时候的LIKE。


4、应尽量避免在where子句中使用or来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,可以使用UNION合并查询:select id from t where num=10 union all select id from t where num=20。


5、in和not in也要慎用,否则会导致全表扫描,对于连续的数值,能用between就不要用in了:Select id from t where num between 1 and 3。


6、下面的查询也将导致全表扫描:select id from t where name like‘%abc%’或者select id from t where name like‘%abc’若要提高效率,可以考虑全文检索。而select id from t where name like‘abc%’才用到索引。


7、如果在where子句中使用参数,也会导致全表扫描。


8、应尽量避免在where子句中对字段进行表达式操作,应尽量避免在where子句中对字段进行函数操作。


9、很多时候用exists代替in是一个好的选择:select num from a where num in(select num from b)。用下面的语句替换:select num from a where exists(select 1 from b where num=a.num)。


10、索引固然可以提高相应的select的效率,但同时也降低了insert及update的效率,因为insert或update时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。


11、应尽可能的避免更新clustered索引数据列, 因为clustered索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新clustered索引数据列,那么需要考虑是否应将该索引建为clustered索引。


12、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。


13、尽可能的使用varchar/nvarchar代替char/nchar,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。


14、最好不要使用”“返回所有:select from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。


15、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。


16、使用表的别名(Alias):当在SQL语句中连接多个表时,请使用表的别名并把别名前缀于每个Column上。这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误。


17、使用“临时表”暂存中间结果 :


简化SQL语句的重要方法就是采用临时表暂存中间结果,但是临时表的好处远远不止这些,将临时结果暂存在临时表,后面的查询就在tempdb中了,这可以避免程序中多次扫描主表,也大大减少了程序执行中“共享锁”阻塞“更新锁”,减少了阻塞,提高了并发性能。


18、一些SQL查询语句应加上nolock,读、写是会相互阻塞的,为了提高并发性能,对于一些查询,可以加上nolock,这样读的时候可以允许写,但缺点是可能读到未提交的脏数据。


使用nolock有3条原则:


  • 查询的结果用于“插、删、改”的不能加nolock;

  • 查询的表属于频繁发生页分裂的,慎用nolock ;

  • 使用临时表一样可以保存“数据前影”,起到类似Oracle的undo表空间的功能,能采用临时表提高并发性能的,不要用nolock。


19、常见的简化规则如下:


不要有超过5个以上的表连接(JOIN),考虑使用临时表或表变量存放中间结果。少用子查询,视图嵌套不要过深,一般视图嵌套不要超过2个为宜。


20、将需要查询的结果预先计算好放在表中,查询的时候再Select。这在SQL7.0以前是最重要的手段,例如医院的住院费计算。


21、用OR的字句可以分解成多个查询,并且通过UNION 连接多个查询。他们的速度只同是否使用索引有关,如果查询需要用到联合索引,用UNION all执行的效率更高。多个OR的字句没有用到索引,改写成UNION的形式再试图与索引匹配。一个关键的问题是否用到索引。


22、在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减少判断的次数。


23、尽量将数据的处理工作放在服务器上,减少网络的开销,如使用存储过程。


存储过程是编译好、优化过、并且被组织到一个执行规划里、且存储在数据库中的SQL语句,是控制流语言的集合,速度当然快。反复执行的动态SQL,可以使用临时存储过程,该过程(临时表)被放在Tempdb中。


24、当服务器的内存够多时,配制线程数量 = 最大连接数+5,这样能发挥最大的效率;否则使用 配制线程数量<最大连接数启用SQL SERVER的线程池来解决,如果还是数量 = 最大连接数+5,严重的损害服务器的性能。


25、查询的关联同写的顺序 :



select a.personMemberID, * from chineseresume a,personmember b where personMemberID = b.referenceid and a.personMemberID = ‘JCNPRH39681’ (A = B ,B = ‘号码’) 


select a.personMemberID, * from chineseresume a,personmember b where a.personMemberID = b.referenceid and a.personMemberID = ‘JCNPRH39681’ and b.referenceid = ‘JCNPRH39681’ (A = B ,B = ‘号码’, A = ‘号码’) 


select a.personMemberID, * from chineseresume a,personmember b where b.referenceid = ‘JCNPRH39681’ and a.personMemberID = ‘JCNPRH39681’ (B = ‘号码’, A = ‘号码’)


26、尽量使用exists代替select count(1)来判断是否存在记录,count函数只有在统计表中所有行数时使用,而且count(1)比count(*)更有效率。


27、尽量使用“>=”,不要使用“>”。


28、索引的使用规范:


  • 索引的创建要与应用结合考虑,建议大的OLTP表不要超过6个索引;

  • 尽可能的使用索引字段作为查询条件,尤其是聚簇索引,必要时可以通过index index_name来强制指定索引;

  • 避免对大表查询时进行table scan,必要时考虑新建索引;

  • 在使用索引字段作为条件时,如果该索引是联合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用;

  • 要注意索引的维护,周期性重建索引,重新编译存储过程。  



29、下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢: 



SELECT * FROM record WHERE substrINg(card_no,1,4)=’5378’ (13秒) 


SELECT * FROM record WHERE amount/30< 1000 (11秒) 


SELECT * FROM record WHERE convert(char(10),date,112)=’19991201’ (10秒) 


分析: 

WHERE子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不进行表搜索,而没有使用该列上面的索引。



如果这些结果在查询编译时就能得到,那么就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样: 



SELECT * FROM record WHERE card_no like ‘5378%’ (< 1秒) 


SELECT * FROM record WHERE amount< 1000*30 (< 1秒) 


SELECT * FROM record WHERE date= ‘1999/12/01’ (< 1秒)


30、当有一批处理的插入或更新时,用批量插入或批量更新,绝不会一条条记录的去更新。


31、在所有的存储过程中,能够用SQL语句的,我绝不会用循环去实现。

例如:列出上个月的每一天,我会用connect by去递归查询一下,绝不会去用循环从上个月第一天到最后一天。


32、选择最有效率的表名顺序(只在基于规则的优化器中有效): 

Oracle的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。


如果有3个以上的表连接查询,那就需要选择交叉表(intersection table)作为基础表,交叉表是指那个被其他表所引用的表。


33、提高GROUP BY语句的效率,可以通过将不需要的记录在GROUP BY之前过滤掉。下面两个查询返回相同结果,但第二个明显就快了许多。 


低效:


SELECT JOB , AVG(SAL) 

FROM EMP 

GROUP BY JOB 

HAVING JOB =’PRESIDENT’ 

OR JOB =’MANAGER’ 


高效: 


SELECT JOB , AVG(SAL) 

FROM EMP 

WHERE JOB =’PRESIDENT’ 

OR JOB =’MANAGER’ 

GROUP BY JOB


34、SQL语句用大写,因为Oracle总是先解析SQL语句,把小写的字母转换成大写的再执行。


35、别名的使用,别名是大型数据库的应用技巧,就是表名、列名在查询中以一个字母为别名,查询速度要比建连接表快1.5倍。


36、避免死锁,在你的存储过程和触发器中访问同一个表时总是以相同的顺序;事务应经可能地缩短,在一个事务中应尽可能减少涉及到的数据量;永远不要在事务中等待用户输入。


37、避免使用临时表,除非却有需要,否则应尽量避免使用临时表,相反,可以使用表变量代替;大多数时候(99%),表变量驻扎在内存中,因此速度比临时表更快,临时表驻扎在TempDb数据库中,因此临时表上的操作需要跨数据库通信,速度自然慢。


38、最好不要使用触发器:


  • 触发一个触发器,执行一个触发器事件本身就是一个耗费资源的过程;

  • 如果能够使用约束实现的,尽量不要使用触发器;

  • 不要为不同的触发事件(Insert,Update和Delete)使用相同的触发器;

  • 不要在触发器中使用事务型代码。


39、索引创建规则: 


  • 表的主键、外键必须有索引; 

  • 数据量超过300的表应该有索引; 

  • 经常与其他表进行连接的表,在连接字段上应该建立索引; 

  • 经常出现在Where子句中的字段,特别是大表的字段,应该建立索引; 

  • 索引应该建在选择性高的字段上; 

  • 索引应该建在小字段上,对于大的文本字段甚至超长字段,不要建索引; 

  • 复合索引的建立需要进行仔细分析,尽量考虑用单字段索引代替; 

  • 正确选择复合索引中的主列字段,一般是选择性较好的字段; 

  • 复合索引的几个字段是否经常同时以AND方式出现在Where子句中?单字段查询是否极少甚至没有?如果是,则可以建立复合索引;否则考虑单字段索引; 

  • 如果复合索引中包含的字段经常单独出现在Where子句中,则分解为多个单字段索引; 

  • 如果复合索引所包含的字段超过3个,那么仔细考虑其必要性,考虑减少复合的字段; 

  • 如果既有单字段索引,又有这几个字段上的复合索引,一般可以删除复合索引; 

  • 频繁进行数据操作的表,不要建立太多的索引; 

  • 删除无用的索引,避免对执行计划造成负面影响; 

  • 表上建立的每个索引都会增加存储开销,索引对于插入、删除、更新操作也会增加处理上的开销。另外,过多的复合索引,在有单字段索引的情况下,一般都是没有存在价值的;相反,还会降低数据增加删除时的性能,特别是对频繁更新的表来说,负面影响更大。 

  • 尽量不要对数据库中某个含有大量重复的值的字段建立索引。


40、MySQL查询优化总结:


使用慢查询日志去发现慢查询,使用执行计划去判断查询是否正常运行,总是去测试你的查询看看是否他们运行在最佳状态下。


久而久之性能总会变化,避免在整个表上使用count(*),它可能锁住整张表,使查询保持一致以便后续相似的查询可以使用查询缓存,在适当的情形下使用GROUP BY而不是DISTINCT,在WHERE、GROUP BY和ORDER BY子句中使用有索引的列,保持索引简单,不在多个索引中包含同一个列。


有时候MySQL会使用错误的索引,对于这种情况使用USE INDEX,检查使用SQL_MODE=STRICT的问题,对于记录数小于5的索引字段,在UNION的时候使用LIMIT不是是用OR。 


为了避免在更新前SELECT,使用INSERT ON DUPLICATE KEY或者INSERT IGNORE,不要用UPDATE去实现,不要使用MAX,使用索引字段和ORDER BY子句,LIMIT M,N实际上可以减缓查询在某些情况下,有节制地使用,在WHERE子句中使用UNION代替子查询,在重新启动的MySQL,记得来温暖你的数据库,以确保数据在内存和查询速度快,考虑持久连接,而不是多个连接,以减少开销。


基准查询,包括使用服务器上的负载,有时一个简单的查询可以影响其他查询,当负载增加在服务器上,使用SHOW PROCESSLIST查看慢的和有问题的查询,在开发环境中产生的镜像数据中测试的所有可疑的查询。


41、MySQL备份过程:


  • 从二级复制服务器上进行备份;

  • 在进行备份期间停止复制,以避免在数据依赖和外键约束上出现不一致;

  • 彻底停止MySQL,从数据库文件进行备份;

  • 如果使用MySQL dump进行备份,请同时备份二进制日志文件 – 确保复制没有中断;

  • 不要信任LVM快照,这很可能产生数据不一致,将来会给你带来麻烦;

  • 为了更容易进行单表恢复,以表为单位导出数据——如果数据是与其他表隔离的。 

  • 当使用mysqldump时请使用–opt;

  • 在备份之前检查和优化表;

  • 为了更快的进行导入,在导入时临时禁用外键约束。;

  • 为了更快的进行导入,在导入时临时禁用唯一性检测;

  • 在每一次备份后计算数据库,表以及索引的尺寸,以便更够监控数据尺寸的增长;

  • 通过自动调度脚本监控复制实例的错误和延迟;

  • 定期执行备份。


42、查询缓冲并不自动处理空格,因此,在写SQL语句时,应尽量减少空格的使用,尤其是在SQL首和尾的空格(因为查询缓冲并不自动截取首尾空格)。


43、member用mid做标准进行分表方便查询么?一般的业务需求中基本上都是以username为查询依据,正常应当是username做hash取模来分表。


而分表的话MySQL的partition功能就是干这个的,对代码是透明的;在代码层面去实现貌似是不合理的。


44、我们应该为数据库里的每张表都设置一个ID做为其主键,而且最好的是一个INT型的(推荐使用UNSIGNED),并设置上自动增加的AUTO_INCREMENT标志。


45、在所有的存储过程和触发器的开始处设置SET NOCOUNT ON,在结束时设置SET NOCOUNT OFF。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC消息。


46、MySQL查询可以启用高速查询缓存。这是提高数据库性能的有效MySQL优化方法之一。当同一个查询被执行多次时,从缓存中提取数据和直接从数据库中返回数据快很多。


47、EXPLAIN SELECT查询用来跟踪查看效果:


使用EXPLAIN关键字可以让你知道MySQL是如何处理你的SQL语句的。这可以帮你分析你的查询语句或是表结构的性能瓶颈。EXPLAIN的查询结果还会告诉你你的索引主键被如何利用的,你的数据表是如何被搜索和排序的。


48、当只要一行数据时使用LIMIT 1 :


当你查询表的有些时候,你已经知道结果只会有一条结果,但因为你可能需要去fetch游标,或是你也许会去检查返回的记录数。


在这种情况下,加上LIMIT 1可以增加性能。这样一来,MySQL数据库引擎会在找到一条数据后停止搜索,而不是继续往后查少下一条符合记录的数据。


49、选择表合适存储引擎: 


  • myisam:应用时以读和插入操作为主,只有少量的更新和删除,并且对事务的完整性,并发性要求不是很高的。 

  • InnoDB:事务处理,以及并发条件下要求数据的一致性。除了插入和查询外,包括很多的更新和删除。(InnoDB有效地降低删除和更新导致的锁定)。

    对于支持事务的InnoDB类型的表来说,影响速度的主要原因是AUTOCOMMIT默认设置是打开的,而且程序没有显式调用BEGIN 开始事务,导致每插入一条都自动提交,严重影响了速度。可以在执行SQL前调用begin,多条SQL形成一个事物(即使autocommit打开也可以),将大大提高性能。


50、优化表的数据类型,选择合适的数据类型: 


原则:更小通常更好,简单就好,所有字段都得有默认值,尽量避免null。 


例如:数据库表设计时候更小的占磁盘空间尽可能使用更小的整数类型。(mediumint就比int更合适) 


比如时间字段:datetime和timestamp,datetime占用8个字节,而timestamp占用4个字节,只用了一半,而timestamp表示的范围是1970—2037适合做更新时间 


MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。 


因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。


例如:在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间。甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。


同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段,应该尽量把字段设置为NOT NULL,这样在将来执行查询的时候,数据库不用去比较NULL值。 


对于某些文本字段,例如“省份”或者“性别”,我们可以将它们定义为ENUM类型。因为在MySQL中,ENUM类型被当作数值型数据来处理,而数值型数据被处理起来的速度要比文本类型快得多。这样,我们又可以提高数据库的性能。

51、字符串数据类型:char,varchar,text选择区别。

52、任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等,查询时要尽可能将操作移至等号右边。

注意:在建表时候,尽量使字段的默认值不为NULL

基于目前大部分的开发现状来说,我们都会把字段全部设置成NOT NULL并且给默认值的形式。

通常,对于默认值一般这样设置:

  1. 1.整形,我们一般使用0作为默认值。

  2. 2.字符串,默认空字符串

  3. 3.时间,可以默认1970-01-01 08:00:01,或者默认0000-00-00 00:00:00,但是连接参数要添加zeroDateTimeBehavior=convertToNull,建议的话还是不要用这种默认的时间格式比较好

但是,考虑下原因,为什么要设置成NOT NULL?

来自高性能Mysql中有这样一段话:

   尽量避免NULL
   很多表都包含可为NULL(空值)的列,即使应用程序并不需要保存NULL也是如此,这是因为可为NULL是列的默认属性。通常情况下最好指定列为NOT NULL,除非真的需要存储NULL值。
   如果查询中包含可为NULL的列,对MySql来说更难优化,因为可为NULL的列使得索引、索引统计和值比较都更复杂。可为NULL的列会使用更多的存储空间,在MySql里也需要特殊处理。当可为NULL的列被索引时,每个索引记录需要一个额外的字节,在MyISAM里甚至还可能导致固定大小的索引(例如只有一个整数列的索引)变成可变大小的索引。
   通常把可为NULL的列改为NOT NULL带来的性能提升比较小,所以(调优时)没有必要首先在现有schema中查找并修改掉这种情况,除非确定这会导致问题。但是,如果计划在列上建索引,就应该尽量避免设计成可为NULL的列。
   当然也有例外,例如值得一提的是,InnoDB使用单独的位(bit)存储NULL值,所以对于稀疏数据有很好的空间效率。但这一点不适用于MyISAM。

书中的描述说了几个主要问题,我这里暂且抛开MyISAM的问题不谈,这里我针对InnoDB作为考量条件。

  1. 1.如果不设置NOT NULL的话,NULL是列的默认值,如果不是本身需要的话,尽量就不要使用NULL
  2. 2.使用NULL带来更多的问题,比如索引、索引统计、值计算更加复杂,如果使用索引,就要避免列设置成NULL
  3. 3.如果是索引列,会带来的存储空间的问题,需要额外的特殊处理,还会导致更多的存储空间占用
  4. 4.对于稀疏数据有更好的空间效率,稀疏数据指的是很多值为NULL,只有少数行的列有非NULL值的情况

默认值

对于MySql而言,如果不主动设置为NOT NULL的话,那么插入数据的时候默认值就是NULL。

NULL和NOT NULL使用的空值代表的含义是不一样,NULL可以认为这一列的值是未知的,空值则可以认为我们知道这个值,只不过他是空的而已。

举个例子,一张表中的某一条name字段是NULL,我们可以认为不知道名字是什么,反之如果是空字符串则可以认为我们知道没有名字,他就是一个空值

而对于大多数程序的情况而言,没有什么特殊需要非要字段要NULL的吧,NULL值反而会对程序造成比如空指针的问题。

对于现状大部分使用MyBatis的情况来说,我建议使用默认生成的insertSelective方法或者纯手动写插入方法,可以避免新增NOT NULL字段导致的默认值不生效或者插入报错的问题。

值计算

聚合函数不准确

对于NULL值的列,使用聚合函数的时候会忽略NULL值。

现在我们有一张表,name字段默认是NULL,此时对name进行count得出的结果是1,这个是错误的。

count(*)是对表中的行数进行统计,count(name)则是对表中非NULL的列进行统计。


=失效

对于NULL值的列,是不能使用=表达式进行判断的,下面对name的查询是不成立的,必须使用is NULL


与其他值运算

NULL和其他任何值进行运算都是NULL,包括表达式的值也是NULL。

user表第二条记录age是NULL,所以+1之后还是NULL,name是NULL,进行concat运算之后结果还是NULL。


可以再看下下面的例子,任何和NULL进行运算的话得出的结果都会是NULL,想象下你设计的某个字段如果是NULL还不小心进行各种运算,最后得出的结果。。。


distinct、group by、order by

对于distinctgroup by来说,所有的NULL值都会被视为相等,对于order by来说升序NULL会排在最前


其他问题

表中只有一条有名字的记录,此时查询名字!=a预期的结果应该是想查出来剩余的两条记录,会发现与预期结果不匹配。


索引问题

为了验证NULL字段对索引的影响,分别对nameage添加索引。


关于网上很多说如果NULL那么不能使用索引的说法,这个描述其实并不准确,根据引用官方文档[3]里描述,使用is NULL和范围查询都是可以和正常一样使用索引的,实际验证的结果好像也是这样,看以下例子。


然后接着我们往数据库中继续插入一些数据进行测试,当NULL列值变多之后发现索引失效了。


我们知道,一个查询SQL执行大概是这样的流程:


首先连接器负责连接到指定的数据库上,接着看看查询缓存中是否有这条语句,如果有就直接返回结果。

如果缓存没有命中的话,就需要分析器来对SQL语句进行语法和词法分析,判断SQL语句是否合法。

现在来到优化器,就会选择使用什么索引比较合理,SQL语句具体怎么执行的方案就确定下来了。

最后执行器负责执行语句、有无权限进行查询,返回执行结果。

从上面的简单测试结果其实可以看到,索引列存在NULL就会存在书中所说的导致优化器在做索引选择的时候更复杂,更加难以优化。

存储空间

数据库中的一行记录在最终磁盘文件中也是以行的方式来存储的,对于InnoDB来说,有4种行存储格式:REDUNDANTCOMPACTDYNAMICCOMPRESSED

InnoDB的默认行存储格式是COMPACT,存储格式如下所示,虚线部分代表可能不一定会存在。


变长字段长度列表:有多个字段则以逆序存储,我们只有一个字段所有不考虑那么多,存储格式是16进制,如果没有变长字段就不需要这一部分了。

NULL值列表:用来存储我们记录中值为NULL的情况,如果存在多个NULL值那么也是逆序存储,并且必须是8bit的整数倍,如果不够8bit,则高位补0。1代表是NULL,0代表不是NULL。如果都是NOT NULL那么这个就存在了。

ROW_ID:一行记录的唯一标志,没有指定主键的时候自动生成的ROW_ID作为主键。

TRX_ID:事务ID。

ROLL_PRT:回滚指针。

最后就是每列的值。

为了说明清楚这个存储格式的问题,我弄张表来测试,这张表只有c1字段是NOT NULL,其他都是可以为NULL的。


可变字段长度列表c1c3字段值长度分别为1和2,所以长度转换为16进制是0x01 0x02,逆序之后就是0x02 0x01

NULL值列表:因为存在允许为NULL的列,所以c2,c3,c4分别为010,逆序之后还是一样,同时高位补0满8位,结果是00000010

其他字段我们暂时不管他,最后第一条记录的结果就是,当然这里我们就不考虑编码之后的结果了。


这样就是一个完整的数据行数据的格式,反之,如果我们把所有字段都设置为NOT NULL,并且插入一条数据a,bb,ccc,dddd的话,存储格式应该这样:


虽然我们发现NULL本身并不会占用存储空间,但是如果存在NULL的话就会多占用一个字节的标志位的空间。

全部评论